Exercise	1	2	3	Total
100%	6	6	4	16
Points				

Extragalactic Astronomy and Cosmology

Homework 2 - Lecture 5 - curvature, Hubble's law **Due date: September 19**

1 Angular width on a sphere

Given a sphere with radius R and a point X on this sphere. An object of width $ds \ll R$ is at fixed distance r from this point (thus, all points are on the sphere and distances are measured on the surface of the sphere). What angular width $d\theta$ will the object have seen from point X? What happens with $d\theta$ when r approaches πR ?

Hint: If you have problems with this exercise, read Section 3.2 of Ryden

2 Drawing circles on a sphere

As in the previous exercise, imagine a sphere of radius R and work in two-dimensional coordinates. Show that if you draw a circle of radius r, the circle's circumference U will be

$$U = 2\pi R \sin(r/R) \tag{1}$$

Idealize the Earth as a perfect sphere of radius $R=6371\,\mathrm{km}$. If you could measure distances with an error of ± 1 meter, how large a circle would you have to draw on the Earth's surface to convince yourself that Earth is spherical rather than flat?

Hint: Compare the circumference on a flat surface with that on a curved one

3 Hubble's law

Imagine four galaxies:

Galaxy A is at a distance of 10 Mpc to the East of us,

Galaxy B is at a distance of 20 Mpc to the East,

Galaxy C is at a distance of 10 Mpc to the West, and

Galaxy D is at a distance of 20 Mpc to the West.

- a) Calculate their velocities relative to the Milky Way Galaxy based on Hubble's law.
- b) Calculate the velocities of all these galaxies as well as that of the Milky Way, relative to Galaxy A and show that observers in Galaxy A observe the same Hubble law (i.e. that they derive the same Hubble constant H_0).